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Large language models have gained signi�cant popularity and are often provided as a service (i.e., LLMaaS).

Companies like OpenAI and Google provide online APIs of LLMs to allow downstream users to create

innovative applications. Despite its popularity, LLM safety and quality assurance is a well-recognized concern

in the real world, requiring extra e�orts for testing these LLMs. Unfortunately, while end-to-end services like

ChatGPT have garnered rising attention in terms of testing, the LLMaaS embeddings have comparatively

received less scrutiny. We state the importance of testing and uncovering problematic individual embeddings

without considering downstream applications. The abstraction and non-interpretability of embedded vectors,

combined with the black-box inaccessibility of LLMaaS, make testing a challenging puzzle. This paper proposes

Costello, a black-box approach to reveal potential defects in abstract embedding vectors from LLMaaS by

contrastive testing. Our intuition is that high-quality LLMs can adequately capture the semantic relationships of

the input texts and properly represent their relationships in the high-dimensional space. For the given interface

of LLMaaS and seed inputs, Costello can automatically generate test suites and output words with potential

problematic embeddings. The idea is to synthesize contrastive samples with guidance, including positive and

negative samples, by mutating seed inputs. Our synthesis guide will leverage task-speci�c properties to control

the mutation procedure and generate samples with known partial relationships in the high-dimensional space.

Thus, we can compare the expected relationship (oracle) and embedding distance (output of LLMs) to locate

potential buggy cases. We evaluate Costello on 42 open-source (encoder-based) language models and two

real-world commercial LLMaaS. Experimental results show that Costello can e�ectively detect semantic

violations, where more than 62% of violations on average result in erroneous behaviors (e.g., unfairness) of

downstream applications.
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Fig. 1. An illustration of developing downstream applications with LLMaaS embeddings.

1 INTRODUCTION

Recently, large language models (LLMs) have demonstrated remarkable power and even surpassed
human performance on a wide range of NLP scenarios, such as text classi�cation [17], question
answering [6], machine translation [4]. However, the cost of training a well-performing LLM
often runs into hundreds of millions of dollars, leading companies to keep them proprietary for
commercial reasons. Besides, running LLMs can be una�ordable for personal users due to huge GPU
consumption. As a result, companies like OpenAI, Google and Baidu typically deploy their LLMs on
cloud servers and release the power of LLMs as a service through black-box APIs, such as GPT-3 [9],
PaLM [14] and ERNIE 3.0 [60]. Large Language Model as a Service (LLMaaS) provides users with
a range of options to interact with the LLM via API and create their customized applications,
including but not limited to prompt-based tuning [37, 39, 59], in-context learning [9, 54], and
embedding-based approaches [48]. ChatGPT stands as one of the foremost and highly acclaimed
prompt-based applications, emerging as a trailblazer within the realm of LLMaaS, boasting an
extensive user base numbering in the hundreds of millions [6].

In this work, we focus on the LLMaaS providing embeddings, which acts as a feature extractor that
allows users to acquire high-quality representations and subsequently do follow-up development,
as illustrated in Figure 1. Firstly, users collect textual data to the online API and API feedback
numeric representations (embedding vectors) in step (a). Then, in step (b), users train their own
lightweight AI models based on embeddings according to their needs, such as sentiment analysis,
semantic matching, etc. Finally, the lightweight models will be deployed into real applications in
step (c) and provide services by interacting with the online API. Under this production paradigm,
users do not need to rack their brains to construct appropriate prompts to induce LLMs to output
satisfactory answers, and the LLMaaS platforms do not need to frequently �ne-tune LLMs to
cater various needs of users. LLMaaS embeddings are becoming increasingly popular due to good
�exibility and cost-e�ectiveness, e.g., JetBrains achieves data source classi�cation powered by
OpenAI’s embeddings [2] and FED Group makes candidate recommendations through HrFlow’s
embeddings [1]. Moreover, embeddings �nd applications for text indexing in conjunction with
ChatGPT to build customized Question-Answer (QA) systems, leveraging local knowledge bases [7].
Despite its popularity, LLMaaS is far from perfect in many critical aspects (e.g., robustness,

fairness, etc.), which has caused widespread concern among researchers and practitioners alike.
Even ChatGPT, currently the most advanced LLMaaS with millions of users, is vulnerable to
word-level adversarial attacks [65] and rife with discriminatory bias [3]. Note that although the
LLMaaS embeddings are “semi-�nished products”, which need to be further developed to yield real

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 41. Publication date: July 2024.



COSTELLO: Contrastive Testing for Embedding-Based Large Language Model as a Service Embeddings 41:3

value, the quality/security concerns should not be diminished. Typically, an attacker can provide a
malicious LLMaaS and leverage tainted embeddings to perform task-independent backdoor attacks
on downstream applications [10]. Many studies have demonstrated that the quality of embeddings
can impact the level of performance achieved by downstream applications [17, 36, 55]. As the
infrastructure for supporting a wide range of downstream applications, the impact of a �awed
LLMaaS would be di�cult to estimate. Hence, conducting tailored testing for LLMaaS to uncover
�aws/issues is of signi�cant importance for safety and quality. Also, testing for LLMaaS embeddings
is in demand from the viewpoint of software development. On one hand, pre-developing testing
helps downstream developers conduct a feasibility analysis to determine if the service meets their
needs and select the appropriate upstream service providers before investing resources and time in
developing the application. On the other hand, if the application they develop does not perform well
with certain inputs, testing on embeddings can aid in root cause analysis by diagnosing whether
the provided embeddings are bad or their training procedure still needs to be improved.

However, testing LLMaaS embeddings is still not well-recognized and remains a challenging task.
Firstly, the black box characterization dictates that we do not have access to the internal imple-
mentation as well as the weight of the LLM, which hampers our ability to verify the procedures and
identify anomalous behaviors of language models through commonly white-box testing methods,
such as neuron state analysis [18, 28]. Secondly, obtaining the test oracle is tough even if we have
the input and output of the target system. The LLMaaS embeddings are abstract, uninterpretable,
high-dimensional vectors. This makes it impossible to directly con�rm the association between
input and output, or to accurately predict the expected embedding values as a reference for a given
input. Some existing methods are testing various NLP software, but their target output is all textual,
thus enabling them to check whether the output meets the expectation or references through
methods such as metamorphic testing [11, 32, 57]. Overall, how to test the LLMaaS embeddings is
still an open problem.
In this paper, we propose a novel contrastive testing approach for testing black-box LLMaaS,

namely Costello, to identify those textual inputs in which the embedding vectors are potentially
problematic. The core idea of Costello is inspired by the contrastive learning, a widely adopted
training paradigm [13, 22] that aims to make similar samples closer to each other in the feature
space while the dissimilar samples are far away from each other. Similarly, our intuition is that
high-quality LLMs can adequately capture the desired relationship among multiple inputs. Our idea
is to synthesize contrastive samples from the aspect of semantics and compare whether embedding
vectors meet expectations. We introduce the contrastive relationships (CRs) to declare the positive
(i.e., similar) samples and negative (i.e., dissimilar) samples. Since the LLMaaS embeddings are used
as a cornerstone for various downstream tasks, we consider common scenarios (e.g. sentiment
analysis and semantic matching) and extract task-speci�c properties (e.g. accuracy and fairness),
then propose four kinds of CRs. With the guidance of CRs, Costello can generate test cases
via mutating seed inputs by word substitution, etc., and combine them into pairs of contrastive
samples, each containing one seed sample, positive sample and negative sample. After obtaining
the test suite, Costello can directly collect embeddings returned by LLMaaS, and check whether
the embedding of positive samples is closer than that of negative samples by measuring the vector
distance, i.e. verify the CRs. Embeddings that violate semantic relationships will be considered
potentially problematic, and the test cases corresponding to them will be reported by Costello as
buggy cases. In a nutshell, our contribution can be summarized as follows:

• We propose a novel contrastive testing approach, namely Costello, to automatically detect
those potentially problematic embeddings and buggy cases from the aspect of semantics.
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To the best of our knowledge, Costello is the �rst testing method designed for individual
LLMaaS embeddings.
• We evaluate Costello on 42 open-source language models and two commercial LLMaaS
(provided by NLPCloud and Ali Cloud). The results show that Costello can e�ectively detect
buggy cases, where more than 62% lead downstream applications to misbehaviors.
• Our data and codes are released at https://github.com/lenijwp/COSTELLO.

2 BACKGROUND

2.1 Large-Language-Model-as-a-Servcie

Large language models (LLMs) are powerful machine learning models trained on massive amounts
of natural language task, and have shown remarkable performance in question answering [6], and
language translation [4], etc. It is a promising way to deploy extremely large language models
on the cloud and serve various downstream applications via general-purpose APIs. For service
providers, they can provide a single API for all users, which is more convenient and cost-e�ective
than developing a speci�c model for each user. For users, they bene�t from the convenience of
LLMs without the huge hardware expense.
There are several di�erent ways for users to interact with LLMaaS and develop customized

applications. The embedding-based approach [48] means that LLM encodes text into digital represen-
tation vectors (embeddings) based on the knowledge learned from a large corpus. Users can build
datasets with returned embeddings and �exibly perform data analysis, model training, etc. The
prompt-based approach [37, 39, 59] converts downstream tasks into a masked language modeling
task. The user induces the LLM to output the desired information by constructing a speci�c prompt.
It is a challenge to design a high-quality prompt. The in-context learning [9, 54] means LLMs observe
a test instance and a few training examples as input, then directly generate the output without
any update of parameters. However, the performance strongly depends on the selected training
examples. In this paper, we focus on the embedding-based development paradigm. More speci�cally,
we are concerned with how to test the embeddings provided by the LLMaaS.

2.2 Contrastive Learning

Contrastive learning is a popular self-supervised representation learning paradigm. The basic
idea behind contrastive learning is to embed each input sample into a high-dimensional feature
space and learn to contrast the representations between pairs of semantically similar(positive) and
dissimilar(negative) samples with a similarity metric [51]. The core of contrastive learning is to pull
positive samples together and push apart negative samples in the feature space, via designing an
e�ective loss function. A common strategy to pick a positive sample is to pick two augmentations of
the same input, while negative samples are randomly sampled from the same batch [13]. Contrastive
learning has been widely applied in both CV [13, 33, 64] and NLP [15, 22, 27, 68]. Recently, the
software engineering community has also tried to apply contrastive learning to �ne-tune large
code language models and implement better code search, etc. [40, 58]. Given its empirical success,
we believe that a high-quality representation should host the semantical similarity relationships
among the input pairs.

3 MOTIVATION AND IDEA

3.1 Motivation and Challenges

The LLMaaS embeddings are gradually receiving widespread attention due to cost-e�ectiveness
and �exibility. Users employ obtained embeddings to perform tasks such as classi�cation and
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similarity-based information retrieval, even in critical domains such as Human Resources [1]. How-
ever, the quality of embeddings is not guaranteed, which can lead to misbehaviors in downstream
scenarios. Consider the example shown in Figure 2, where embeddings are used to analyze the
reviews of actors’ acting. If the word “His” in “His acting is quite passable” is replaced with “Her”,
the embedding undergoes a signi�cant feature shift. This issue hinders the ability to achieve precise
classi�cation and clustering, thereby compromising the accuracy and fairness of downstream tasks
that rely on embeddings. Similar issues are common, such as embeddings provided by commercial
NLPCloud have been observed to exhibit sensitivity to changes in gender terms “male” and “female”
in certain contexts (to be presented in §5.5). From a software engineering perspective, testing
LLMaaS embeddings is instrumental in enhancing production processes. Ordinarily, the initial
software development phase entails conducting a feasibility study and choosing the appropriate
dependencies. In the LLMaaS-embeddings-driven development, scrutinizing the embeddings fur-
nished by the upstream assists in identifying the risky areas and opting for the �tting LLMaaS
ahead of thoughtlessly expending resources on application training. When encountering bugs in
a developed application, it is often necessary to perform root cause analysis to determine where
the issue lies within the pipeline. Likewise, if a downstream application underperforms on certain
inputs, developers must ascertain whether the issue is mainly due to detectable shortcomings in
the embeddings provided by the upstream or whether the downstream development process is not
up to par. If it’s the former, they may need to notify the upstream vendor of the problem. Therefore,
we are motivated to investigate the quality issues of individual LLMaaS embeddings and how to
test them without the need to train real downstream applications.

His acting is quite passable

His acting is not 
qualified His acting is not passable

His acting is perfect

His acting sucks.

[Clustering & Search]

[Classification]

�� << ��  Her acting is quite 
passable

His acting is moderate

Her acting is qualified

Fig. 2. An illustration of our basic idea.

There lies a large gap between testing end-to-
end NLP software and LLMaaS embeddings, owing
to the obstacle of test oracle, i.e. there is no ground

truth to directly predict what an embedding vector

should be and diagnose whether it is correct. The
core di�erence between them is about the outputs.
The former is generally a predicted label or a gener-
ated sentence, but the latter is a high-dimensional
and non-interpretable representation. We can eas-
ily claim that a label is correct or that a sentence is
consistent, however, it is impossibly di�cult to as-
sert whether an abstract representation is right or
wrong. Any transformation of the input may cause
unpredictable �uctuations in embeddings. Thus,
the most challenging part of testing LLMaaS embeddings is �nding a proper test oracle.

3.2 Our Idea

Inspired by contrastive learning, we propose a novel method or concept, called contrastive testing.
Contrastive learning is essentially trying to encode semantic similarity into the feature space,
with the assumption that semantically similar samples should also be close in the feature space,
while semantically dissimilar sentences should be distinguishable. We know that “His acting is
quite passable” and “Her acting is quite passable” are semantically similar, while “His acting is not
passable” conveys an opposite opinion. Therefore, it is intuitive to expect that the embeddings
of the former pair are closer to each other in the feature space than the latter pair. However, as
shown in Figure 2, the actual distribution is on the contrary, i.e., 31 >> 32, which indicates a
problematic embedding of “Her acting is quite passable”. Based on this intuition, we recognize
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Fig. 3. The Overview of Costello

that we can construct contrast samples (i.e. positive/negative samples) and compare distances in
returned embeddings to detect potential issues.
Considering the speci�c properties for various downstream tasks, we introduce contrastive

relationships (CRs) to describe which samples are semantically more similar/distinct following
task-speci�c properties. For example, the impact of changing sentiment words (even synonyms e.g.
love to like) is greater than that of gender entities (e.g. her to his) under the sentiment analysis
scenario. With diverse CRs, we can test the problematic embeddings from LLMaaS API by calculating

and comparing vector distances among embeddings, thereby bypassing the challenge of providing a

test oracle for abstract representation without predicting a precise vector value.

4 DESIGN

4.1 Costello Overview

As shown in Figure 3, Costello takes the target LLMaaS API under testing (i.e. AUT) and a set
of seed samples as inputs, then reports buggy cases that violate speci�c CRs (i.e. where returned
embeddings are suspiciously problematic). Costello has two components: test suite generation and
validation based on CRs. At the test suite generation stage, Costello employs a two-step process
to generate the test suite, e.g. a set of contrast samples. It generates multiple semantic variants
based on diverse mutation operators, and further combines these variants with the guidance of
CRs. Within the validation based on CRs stage, Costello �rstly sends all contrast samples to the
AUT, collects returned embeddings, and then measures the vector distances between the seeds and
positive or negative samples. It �nally checks whether the contrastive distances conform to the
CRs.
Considering the diversity of downstream tasks, our design and implementation of CRs mainly

target two tasks: sentiment analysis and semantic matching, where the former has been considered
to be “mini-NLP” with a composite nature that requires 15 fundamental NLP problems to be
addressed at the same time [19, 49]. It is worth emphasizing Costello is a general approach, which
can be further expanded to other tasks by adding task-speci�c CRs and mutation operators.

4.2 Test Suite Generation

4.2.1 Semantic Variants Generation. A commonly used method for generating test cases is to utilize
mutation operators, which can alter a given input to produce new sentences with either similar or
di�erent semantics. Among these mutation techniques, word substitution is one of the most �exible
and frequently used methods for generating new test cases [63]. In order to create diverse semantic
variants (i.e., test cases), we adopt word substitution and introduce the following operators:
• Synonym substitution. Firstly, we identify those adjectives and verbs in a sentence input,
which are generally considered relevant for sentiment analysis. Then we replaces them with their
synonyms based on WordNet [45], a commonly used dictionary. Taking into account that the key
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components a�ecting the semantics vary from task to task, there are more �exible and stricter
constraints when implementing substitutions. To ensure that the substitutions are emotionally
relevant for sentiment analysis, we apply an emotion dictionary SentiWordnet [20] to guarantee
the words before and after the substitution keep a clear emotional tendency. For semantic matching,
we �rst require that the seed input pair is semantically consistent and contains the same notional
words in both sentences, thus eventually substitute those words. The underlying assumption is
that those words are the key link between the semantics of the two sentences. For example, if the
two sentences are “Alice loves Bob” and “Bob is loved by Alice”, we can replace the word “love” to
generate a new sentence pair.
• Antonym substitution. Similar to the synonym substitution, the di�erence is we replace
the identi�ed word with an antonym. Meanwhile, the new words have the opposite sentiment
polarity to the original words when it is guided by sentiment. Due to the intricacy of sentence
structures, antonym substitution cannot guarantee a complete inversion of the sentence’s semantics.
Nonetheless, it can signi�cantly modify the sentiment score of the generated sentence compared to
the original one.
• Gender entity substitution.We replace gendered words in a given sentence with their counter-
parts. For example, change “Alice” to “Bob” or change “He” to “She”. The substitution is based on
the entity lexicon proposed by CHECKLIST [52]. This operator is often used to evaluate fairness.
• Semantic inversion.Given the di�culty in fully and accurately reversing sentence semantics [53,
67], we propose a substitution operator based on a reference table containing a high-quality semantic
reversal corpus. We introduce the contrast set [24] as the reference table for sentiment analysis.
This set comprises numerous manually crafted pairs of sentiment-reversed sentences, employing
techniques such as antonym substitution and negation removal in their construction. Costello
automatically matches the reference table to generate semantic inversed variants. This operator
is easily expandable, allowing users to supplement the reference table according to their speci�c
needs, thereby facilitating tailored semantic inversion for custom scenarios.

4.2.2 Combination with CRs. We introduce contrastive relationships (CRs) to describe known
partial semantic relationships based on the task-speci�c properties and priority knowledge. The
CR declares which test cases are positive samples and which are negative samples. In Costello,
we combine commonly required properties (such as accuracy, robustness and fairness) and four
mutation operators mentioned above to design three task-speci�c CRs for the sentiment analysis
and one for the semantic matching.

Definition 1. Contrastive Relationship (CR). Given two mutation operators "1, "2 and an

arbitrary seed B , two new cases can be generated as"1 (B),"2 (B). According to task-speci�c priority

knowledge, the"1 (B) should always be semantically closer to the the seed B than"2 (B).

CR1/CR4: Synonym VS antonym substitution. Intuitively, synonym substitution has less
impact on semantics than antonym substitution. For the comparison to be meaningful, we constrain
that two substitutions must operate on the same word. This CR requires that LLM should correctly
understand and characterize the semantics of words, which is based on the mandatory property of
Accuracy. As mentioned above, the rules to select the replaced words are di�erent for sentiment
analysis and semantic matching scenarios when employing synonym and antonym substitution
operators. Therefore, we refer to CR1 for sentiment analysis and CR4 for semantic matching.
CR2: Gender entity VS synonym substitution. The fairness of AI system is currently of
paramount importance. We follow the widely adopted de�nation of individual fairness [52, 73, 74],
which stipulates the AI system should not give di�erent dicisions for inputs only di�ers with
sensitive attributes such as gender and race. Since the embeddings of two sentences are hardly
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identical, we take a step back and think gender entity substitution should have less impact on
semantics than synonym substitution, where the latter operates on the components that should
be in a role for a sentence. This is intuitive for sentiment analysis. For example, for the sentiment
word “love” replaced with “like”, the degree of positivity is di�erent, i.e., the sentiment score may
produce some attenuation, which is as expected. But for a fair sentiment classi�cation application,
the perception of sentiment should not be interfered with due to a mere change of gender entity
such as “male” to “female”.
CR3: Synonym substitution VS semantic inversion. Usually, synonym substitution should
not signi�cantly change the semantics of the seed sentences, while semantic inversion completely
reverses the original semantics from an emotional point of view. Therefore, based on the property of
Accuracy, we consider that the �rst operator (i.e., synonym substitution) produces positive samples
while the second one (i.e., semantic inversion) produces negative samples.

He likes this movie.Text

(a) Mutation

He loves this movie.

He hates this movie.

She likes this movie.

He loves this movie.

She likes this movie.

He likes this movie.He likes this movie.

He loves this movie.

He hates this movie.

(b) Combination

close

far

Variants

Accuracy Fairness

Fig. 4. An example of how Costello generates test

suites.

By executing the mutation operators, for
each seed sentence B , Costello can gener-
ate several semantic variants. Then Costello

can combine those sentences into a set of
{(B, B+, B−)},i.e. contrast samples ,where the
positive sample B+ is semantically closer to the
sentence B than the negative sample B− . Figure 4
shows an example. Costello �rst mutates the
seed sentence “He likes this movie” to three
variants and combines them based on CR1 and
CR2 respectively. The CR1 triple suggests that
replacing “like” with “love” is less of a semantic
change than replacing it with “hate”, which is
obvious. It represents the property that a LL-
MaaS should be able to correctly understand
the meaning of words. The CR2 triple holds
that gender should not play a role in categorizing emotions. It is important to note that our testing
methodology originates from an exploration of user requirements. A departure point underlying our
approach is the recognition that a singular embedding service may not uniformly ful�ll the diverse
needs of all users simultaneously. In other words, each contrastive relationship is meticulously
crafted to cater to speci�c tasks, acknowledging that disparate tasks may necessitate distinct or
even con�icting properties. For instance, a user aiming for entity recognition may desire embed-
dings that distinctly represent di�erences between entities like “Her” and “She”, whereas someone
with fairness in mind may aim for these di�erences to be as minimal as possible. Therefore, we
preferentially implement a prototype of the Costello, and the actual usage has to be combined
with the user’s preference.

4.3 CR-based Validation

The validation stage in Costello detects violations based on the feedback of AUT. The overall
process of validation stage is shown in Algorithm 1. Costello �rstly sends all the test cases to AUT
and collects the feedback embeddings (at line 3), and then measures the semantic distance between
the seeds and positive/negative samples (at lines 4-5). It �nally checks whether the distances
conform to the contrastive relationships, i.e., whether embeddings of positive samples are more
similar to the seed inputs than those of negative samples. If there is a violation, Costello adds
their corresponding test cases to the violation set to report (at lines 6-7).
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Algorithm 1 Validation

Input: ( : the test suite, �*) : the API function under testing, \ : the threshold for judgement.
Output: Ω : the set of buggy cases.
1: initialize Ω ← ∅
2: for all (B, B+, B−) ∈ ( do

3: 4, 4+, 4− ← �*) (B, B+, B−)

4: �+ ← (4<� (4, 4+)

5: �− ← (4<� (4, 4−)

6: if �+ − �− > \ then

7: Ω ← Ω ∪ {(B, B+, B−)}

8: end if

9: end for

Algorithm 2 Adaptive Threshold

Input: , : the dictionary, �*) : the API function under testing
Output: \ : the threshold for judgement.
1: initialize + ← ∅
2: for allF ∈, do

3: +42C>AB ← + ∪ {�*) (F)}

4: end for

5: initialize # ← ;4=(, )

6: initialize<8=� ← ∅

7: for 8 = 0 to # − 1 do

8: <8=� ←<8=� ∪ {#486ℎ1>Aℎ>>3�8B (+ , 8)}

9: end for

10: \ ← �BB86=<4=C (<8=�)

4.3.1 Collecting Embedding Triples. Once the test suite has been generated, we will feed them into
the AUT and collect the return embedding vectors. Costello record those vectors from AUT in
the same form of triples corresponding to the input, i.e., for each input triple (B, B+, B−), Costello
records the corresponding embeddings triple as (4, 4+, 4−).

4.3.2 Measuring Distances Between Embeddings. The next step in Costello is to verify that the
semantic distance of embeddings matches the CRs. Denote the function to measure the distance
between two embeddings by (4<� , given an embedding triple (4, 4+, 4−), the semantic distance for
the positive sample can be calculated by (4<� (4, 4+), and the semantic distance for the negative
sample is represented by (4<� (4, 4−), where (4<� accepts two embedding vectors and outputs
a distance value. Considering the choice of (4<� , there are some common metrics to measure
the distance of similarity between high-dimensional representations. Simple yet representative,
we consider the common distance metric such as the !% -norm and �>B8=4 distance. Based on the
experimental result in §5, Costello uses !% -norm distance under % = 1 or % = 2 as the default
setting because of its e�ectiveness. Simultaneously, Costello also implements �>B8=4 distance as
an alternative option.

4.3.3 Final Judgement. The �nal step in Costello is to determine whether the embeddings feed-
backed by AUT match the CRs from the point of semantic distances. Formally, we formulate the
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test criterion as follows:

(4<� (4, 4+) − (4<� (4, 4−) > \

where \ is the threshold. When this criterion is satis�ed, Costello will assert that the embeddings
feedbacked by the AUT violate the CRs. As for the value of \ , taking into account the de�nition of
CRs, the simplest way to come up with is to set \ to 0, because violating the test criterion means
(4<� (4, 4+) > (4<� (4, 4−), i.e., it violates the semantic relationship we expect.

Although it is intuitively e�ective to set \ to 0, Costello also suggests another threshold strategy.
The original purpose for testing LLMaaS embeddings is to prevent low-quality or even incorrect
embeddings from contaminating downstream classi�ers and causing them to make erroneous
decisions. Due to factors such as nonlinear activation functions, classi�ers may not be able to
capture the subtle di�erences between inputs. With this in consideration, we believe that stricter
thresholds could help catch violations that are more likely to cause problems in downstream
applications. It is di�cult to �nd a general threshold value because di�erent models have di�erent
representation distributions and di�erent value ranges of representation values. To handle the
problem, we introduce an adaptive threshold in Costello as shown in Algorithm 2. Considering
that vocabulary is the most essential capability for NLP applications, we set our thresholds based on
minimal lexical representations. First, Costello extracts a dictionary. The most accurate dictionary
for a language model is their token dictionary. Then our Costello takes each word in the dictionary
as a separate sentence and gets its embeddings (at lines 1-4). For each word, Costello calculates
the distance between its nearest neighbor and itself by the same measuring function (4<� (at lines
6-9). After this, Costello obtains a sequence of minimum word pair distances and thus computes
an approximate minimum interval by a statistical perspective(e.g., mean value ` minus standard
deviation f). The minimal interval is assigned to \ (at line 10). In some cases, if the token dictionary
is not available, we suggest that other reasonable dictionaries are also feasible. We provide interfaces
in our system to support users to import customized dictionaries.

5 EVLUATION

We aim to answer the following research questions:

• RQ1: What is the testing performance of Costello? Can it e�ectively detect violations of
task-speci�c semantics?
• RQ2: How do di�erent distance metrics and adaptive thresholds a�ect the testing perfor-
mance?
• RQ3: Can the violations detected byCostello be helpful to improve the LLMaaS embeddings?
• RQ4: (Case Study) Can Costello be applied to uncover problematic embeddings in commer-
cial LLMaaS?

5.1 Setup

5.1.1 Dataset. As mentioned in §4, we implement Costello on the sentiment analysis and se-
mantic matching tasks. We adopt the widely used Standford Sentiment Treebank (SST) dataset and
Microsoft Research Paraphrase Corpus (MRPC) from Hugging Face [5]. We select seeds to generate
contrastive test inputs and train downstream classi�ers based on the two datasets. Meanwhile,
since CR3 contains a manually modi�ed Contrast Set [24], we also use the IMDB samples involved
in the Contrast Set.

5.1.2 Subject Models. Due to the limitations and cost, it is hard to conduct large-scale experiments
on commercial LLMaaS. Therefore, we evaluate Costello based on a series of open-source models.
There exist various types of language models capable of providing embeddings, such as encoder,
decoder and encoder-decoder structures [17, 21, 38]. Given the widespread usage of encoder models
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in training classi�ers based on embeddings, we primarily conduct comprehensive experiments
employing encoder models. In detail, we collect four kinds of pre-trained encoder language models
from the open-source platform Hugging Face, i.e., BERT [17], ALBERT [36], DistilBERT [55] and
ROBERTa [41]. BERT is the �rst large-scale Transformer-based pre-trained language model, which
outperforms other techniques on 11 NLP tasks including sentiment analysis. The other three are
improved versions of BERT. In total, we download 42 popular encoder language models, both
originally pre-trained or �ne-tuned on the related task. We wrap them into an API to output the
embeddings corresponding to the [CLS] token, which are often used for training downstream
applications [17].

5.1.3 Ground Truth. There is no direct ground truth about whether a high-dimensional embedding
vector is correct or wrong. Therefore, Costello raises contrastive relationships and detects viola-
tions from a semantic point of view. The purpose of our test is to avoid the propagation of issues on
embeddings to downstream tasks, we prefer to use the behavior of downstream classi�ers to assert
the signi�cance of the quality defects. Consider the following two reasons: �rst, accurately predict-
ing the labels of newly generated cases is sometimes di�cult (e.g., the label is not clear after doing
antonym substitution for one of multiple keywords), and second, it is somewhat coarse-grained
(the directional expectation test proposed by CHECKLIST requires that the predicted score should
also conform to a speci�ed trend and range of variation), we argue that the output probability
vector of a classi�er should also conform to the CRs. In other words, suppose that �� represents
the output vector of a downstream classi�er, for an embedding triple (4, 4+, 4−), we expect:

|�� (4) − �� (4+) | < |�� (4) − �� (4−) |

Since in the real scenario, we do not know exactly what the downstream classi�er is in advance, we
design a method to simulate this situation, by training multiple di�erent classi�ers and aggregating
their behaviors. The assumption behind this is that if multiple downstreammodels exhibit signi�cant
misbehavior, then there is likely a problem with the input embedding. Speci�cally, we extract
embeddings of SST samples and train = simple neural network classi�ers, which have one or
two hidden layers. Then, for each input triple G = (4, 4+, 4−), we can get � (G) (i.e. the list of
|�� (4) − �� (4+) | of = classi�ers) and� (G) (i.e. the list of |�� (4) − �� (4−) | of = classi�ers). With
these data, we conduct the paired Wilcoxon signed-rank ?-value tests [16] to statistically compare
the semantic relationships that appear in downstream applications. The test is conducted in 1-
tailed manners, at the f level of 0.05. We de�ne two di�erent rules to determine if the quality of
Embedding is problematic. For the former, namely �)�, we consider the greater case, if ? ≥ f ,
we accept the null hypothesis �0 that � (G) do NOT signi�cantly tend to be greater than � (G).
Otherwise, we accept the alternative hypothesis �1 that � (G) signi�cantly tends to be greater than
� (G). For the latter, namely �)� , we consider the less case, if ? ≥ f , we accept the null hypothesis
�0 that � (G) do NOT signi�cantly tend to be less than � (G). Otherwise, we accept the alternative
hypothesis �1 that � (G) signi�cantly tends to be less than � (G). Therefore, we have two types of
ground truths with di�erent levels of strictness:

• �)�: �1 being accepted(when ? < f) indicates that this triple of embeddings leads to a
signi�cant violation of downstream classi�ers, this triple of embeddings is clearly buggy.
• �)� : �0 being accepted(when ? ≥ f) indicates that downstream classi�ers can not capture
the correct semantic relationships, thus this triple of embeddings is potentially buggy.

As above, we build a set of automated, �ne-grained ground truths to check whether issues identi�ed
by Costello signi�cantly lead to misbehaviors in downstream applications.

5.1.4 Evaluation Metrics. We use the following metrics to evaluate our approach:
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Table 1. Numbers of Generated Test Cases.

Type CR1 CR2 CR3 CR4 SUM

Numbers 1417 681 588 408 3094

Table 2. Results of Testing E�ectiveness

Dist. Thres.
CR1 CR2 CR3 CR4 Average

#" #+ %�(%) %� (%) #" #+ %�(%) %� (%) #" #+ %�(%) %� (%) #" #+ %�(%) %� (%) %�(%) %� (%)

!1

zero 42 388 52.44 71.22 42 163 52.37 74.77 42 133 52.37 67.77 42 158 50.91 78.44 52.02 73.05

min 42 346 55.38 72.22 42 142 55.28 76.52 42 127 50.55 66.83 42 140 52.80 81.26 53.50 74.21

` − 2f 42 240 58.53 74.26 41 97 64.61 82.46 42 98 52.78 69.36 41 100 58.31 83.51 58.56 77.40

` − f 42 229 59.41 74.86 41 94 64.23 82.59 42 94 54.80 70.77 41 96 57.81 83.77 59.06 78.00

!2

zero 42 389 52.52 70.91 42 162 52.30 75.23 42 134 49.26 67.59 42 157 50.81 79.76 51.22 73.37

min 42 370 53.26 71.33 42 152 54.25 76.11 42 132 50.83 68.04 42 148 51.98 80.09 52.58 73.89

` − 2f 39 212 63.88 77.57 35 75 66.59 83.42 38 105 56.68 73.28 33 75 60.84 86.28 62.00 80.14

` − f 38 134 67.54 80.15 27 46 64.75 86.00 38 80 65.25 77.56 30 40 66.89 89.83 66.11 83.39

Cos

zero 42 1026 8.74 19.57 42 517 9.38 22.91 42 452 4.00 9.36 42 302 11.81 30.71 8.48 20.64

min 42 1010 8.29 18.65 42 506 9.39 22.73 42 451 4.04 9.04 42 295 11.54 30.92 8.32 20.34

` − 2f 42 1026 8.63 19.48 42 517 9.49 22.78 42 452 4.09 9.70 42 302 12.53 31.06 8.69 20.76

` − f 42 1026 8.66 19.40 42 518 9.64 22.73 42 452 0.40 8.61 42 302 11.24 32.57 7.49 20.83

!2(sst)

min 42 370 53.30 71.23 42 151 54.60 75.79 42 132 49.17 68.04 42 145 51.99 80.63 52.27 73.92

` − 2f 37 241 59.84 74.45 32 97 60.70 79.24 37 108 53.88 69.5 32 92 58.86 83.3 58.32 76.62

` − f 36 157 66.01 76.92 29 66 67.28 84.38 34 77 58.08 69.64 29 62 63.63 85.89 63.75 79.21

• #+ : the number of violations reported by Costello.
• #" : the number of models where Costello successfully report violations.
• %�: the percentage of violations output by Costello lead to violations in downstream appli-
cations under the criteria guided by �)�.
• %� : the percentage of violations output by Costello lead to violations in downstream appli-
cations under the criteria guided by �)� .

5.1.5 Hardware and So�ware. We conduct all experiments on a server that has 64 cores Intel Xeon
2.90GHz CPU, 256GB system memory, 4 NVIDIA 3090 GPUs and Ubuntu 20.04 operating systems.
We implement our framework in Python and use collected language models in PyTorch.

5.1.6 Real World Commercial APIs. To evaluate the e�ectiveness of Costello on real-world
LLMaaS, we apply it to APIs powered by NLPCloud and Ali Cloud1. The former is a commercial
company that specializes in providing various NLP services, their embeddings are built on a GPT-J
model, which is a decoder model. The latter provides a multilingual uni�ed LLMaaS base service,
which uses a larger model than the former.

5.2 E�ectiveness of Costello

To answer Q1, we �rst generate test suites (based on SST and MRCP) and then feed them into all
subject models we collected as mentioned in §5.1 to detect the violations according to the above
CRs. To evaluate the testing performance of Costello, on one hand, we record the number of
violations generated and detected by Costello, and on the other hand we compile statistics on

1In our study, we collected data pertaining to NLPCloud in November 2022 and Ali Cloud in September 2023.
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Fig. 5. Precision with Manual Annotation

the precision of the test results based on two di�erent ground truths(i.e. �)�, �)�). We employ 14
neural network classi�ers for signi�cance testing to determine the ground truth, where the average
accuracy of trained downstream classi�ers exceeds 85%. To reduce the randomness of the statistical
results, we report the average values for all indicators. Costello uses the !2-norm distance metric
and assign the adaptive threshold as ` − 2f by default. We calculate the thresholds based on the
token dictionary that comes with each open-source model.
Results. The size of our generated test suite is shown in Table 1. Table 2 demonstrates how many
violations are successfully tested by our method (e.g., columns #" , #+ ) and how precise the tests
are (e.g., columns %�, %�). In total, Costello successfully generates 3094 triples of test inputs. This
number is smaller than the size of the entire original dataset. Because our generation is lexicon-
based and many sentences are not matched by the lexicon we applied. We believe that if users
choose a more appropriate lexicon based on their seeds, the performance will increase dramatically.
Experiments have shown that Costello can �nd hundreds of violations on almost all subject

models. Without enabling the adaptive threshold, it can achieve 51.22%�)� precision and 73.37%
�)� precision. With adaptive thresholds, Costello achieves better performance, where it can
arrive at 62.00% �)� precision and 80.14% �)� precision. The %� is signi�cantly higher than %�,
which is in line with our expectation and also demonstrates that for many test cases, downstream
models are unable to capture signi�cant di�erences in embedding features. In addition to these 42
encoder models, we also demonstrate the applicability of COSTELLO across models with di�erent
architectures such as BART, LLaMA2, and others, which can be �nd in our repository and case
study in §5.5. The experimental outcome robustly substantiates our motivation, namely, that the
problems present in embeddings are highly likely to be inherited by downstream applications.
Thus, conducting thorough testing for embeddings is paramount.

Answer to RQ1: Costello can e�ectively generate test suites and discover hundreds of vio-
lations on average. More than 51.22% of the violations manage to result in signi�cant bad
behaviors of the downstream classi�ers.

Evaluation with Manual Annotation. To more intuitively analyze the impact of embedding
violations on the correctness of downstream model prediction results, one author attempt to manu-
ally annotate the generated contrast set. In addition to recording the expected labels, constraints
are imposed on the prediction scores, such as the change during the gender entity substitution
should be less than 0.1 and during the near-synonym substitution should be less than 0.3. With the
limitation of domain knowledge, it is di�cult to annotate the test cases by antonym substitution, so
we only consider part of the sentences that could be determined in CR1. The experimental results
are shown in Figure 5. The x-axis indicates that embedding is considered signi�cantly problematic
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Fig. 6. E�ects of Distance Metrics and Adaptive Thresholds

if there are no less than K downstream model prediction errors. The y-axis shows the proportion of
embeddings output by Costello that are signi�cantly problematic. Taking too large and too small
values of K will be too harsh and too lenient, respectively, leading to large evaluation errors.We

can �nd that when K takes appropriate values (e.g., K = 7 or 8), the results remain consistent with the

�)�-based precision. This side-by-side con�rms the e�ectiveness of both Costello and our proposed

automatic ground truth.

5.3 E�ects of Configurations

The implementation of Costello requires predetermining the distance metric and the choice of
adaptive threshold. To explore the impact of distance metrics, we chose three commonly used
metrics for calculating representation distances: !1-norm distance, !2-norm distance and Cosine
distance. We employ three statistical indicators to calculate the adaptive thresholds: <8=8<D<,
` − 2f and ` − f . Also considering that the user side may not have access to the token dictionary
corresponding to the model, we construct a user-friendly dictionary as well. Speci�cally, we extract
each word from the user dataset (corresponding to the SST dataset for our experiment) to form a
dictionary. The conduction of the experiment and the observed metrics are the same as §5.2.
Results. Detailed statistical values are presented in Table 2. As shown in Figure 6, it is clear to
observe that !1-norm and !2-norm achieve comparable performance, which is far better than
Cosine distance. With the Cosine metric, most test cases violate the CRs, along with extremely
low reporting precision. This inspires us that although existing works prefer the Cosine metric
when training models by contrastive learning, it may be worth examining from the perspective of
classi�cation and �ne-grained testing. We recommend choosing !1-norm or !2-norm distance in
practice.

As for the choice of adaptive thresholds, the precision of the violations is gradually increasing as
the threshold value increases. Under !2-norm distance, from I4A> (without the adaptive threshold)
growth to ` − 2f , %� increases by 12.78 percentage points and %� precision increases by 6.77
percentage points. Under !1-norm distance, these two numbers are 6.54 and 4.35 respectively. Also,
we note that as the threshold increases, the number and model of violations that Costello can
detect decreases. So there is a trade-o� in the ability and precision of detection.

This phenomenon also occurs when calculating thresholds using the SST dictionary. However, it
can be seen that the SST dictionary is slightly less e�ective than the token dictionary.

Answer to RQ2: !% -norm distance is signi�cantly more e�ective than the Cosine distance, while
the growth of the adaptive threshold helps to improve the precision.
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5.4 Helpfulness to Repair

Table 3. Fixing Rate

Metric CR1 CR2 CR3 CR4 ALL

#+ 53.28% 35.39% 57.63% 41.76% 50.48%

�)� 11.46% 3.80% 15.66% -0.42% 9.29%

�)� 17.20% 11.58% 18.61% 16.30% 17.30%
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Fig. 7. Fixing Results for Each Model

To further answer RQ3, we aim to explore whether the violations detected by Costello can be
used to improve the performance of pre-trained language models. In software engineering practice,
test results are generally fed back to developers and guide them to �x and re�nement. Inspired
by contrastive learning, we design an unsupervised �xing pipeline that only uses the generated
test suite. Our goal is to �x the bad embeddings that violate CRs. The problem is the number of
violated samples may be small such that learning only a small number of violated samples alone
may cause the large language model to forget its original knowledge to a large extent. To overcome
this problem, we draw on knowledge distillation [26] to use those samples that perform well during
testing as anchors while correcting those that perform poorly as much as possible. In particular,
we mix benign and violated samples to construct the training data set. For each batch of training
samples, half of them are violated triples, and half are benign. For buggy triples, we calculate the
�rst kind of loss:

L1 = )A8?;4!>BB (4, 4+, 4−)

which means we want to optimize the contrastive distances to make those violated triples to behave
better. For the benign triples, we calculate the second kind of loss:

L2 = "(� (4>;3 , 4=4F)

where 4>;3 is the embedding output by the initial language model and 4=4F is the embedding output
by models in the current version. So, the �nal loss can be expressed as:

L = U × L1 + (1 − U) × L2

We take the original model as the input and retrain it on the mixed dataset to improve it. Since
the number of violated samples may be less than the benign samples, we randomly complete the
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Table 4. Results on Commercial LLMaaS

Service Thres.
CR1 CR2 CR3

NV %�(%) %� (%) NV %�(%) %� (%) NV %�(%) %� (%)

Ali Cloud

zero 1024 20.41 32.85 457 38.73 63.02 474 16.88 27.42

min 197 27.41 43.15 227 52.42 77.09 197 22.84 41.62

` − 2f 0 - - 18 83.33 88.88 7 42.86 85.71

` − f 0 - - 8 75.00 87.5 2 50.00 100.00

NLPCloud

zero 400 27.25 41.25 576 39.24 60.59 - - -

min 130 35.38 58.46 495 43.83 66.06 - - -

` − 2f 400 27.25 41.25 576 39.24 60.59 - - -

` − f 8 37.5 62.5 241 53.84 76.35 - - -

violated samples to the size of the benign samples. In our experiment, we set U as 0.5 and select the
SGD optimizer with a learning rate of 0.0001.
Since training LLMs is quite time-consuming, we randomly select 10 models to conduct the

�xing trials. The test results we used are under the default con�guration (i.e. !2-norm and ` − 2f).
We �netune all pre-trained models for 8 epochs.
Results. As shown in Figure 7, where the green bar represents the number of Embedding violations
detected on repaired models, and the red bar represents the number of �xes dropped, it can be
observed that a signi�cant decrease is achieved for all models and test suites. We statistically
calculate the percentage of #+ decline, in Table 3. For each category of CR corresponding to it
achieved the suite considerable �xes, with the percentage ranging from 41% to 57%, while the
overall �xing rate on the whole test suite was 50%. We also count the behaviors of the downstream
classi�ers trained based on the repaired LLM, which also improved by 9.29% (under �)�) and
17.30% (under�)�) respectively on the whole test suite. We notice that the �xing rate under�)� is
negative, this is because we combine the whole test suite to conduct the �xing, so it may be di�cult
to take into account all samples in the limited training. We strongly believe that this phenomenon
will be improved as the test suite increases. It is worth noting that the average accuracy of classi�ers
based on the repaired LLMs decreases by only 0.94% (on SST) and 1% (on MRPC), which indicates

that we achieve a considerable repair outcome while retaining the normal capability of LLMs.

Answer to RQ3: The violation samples detected by Costello are helpful to improve the
behaviors of both language models and downstream classi�ers.

5.5 Case Study

In the case study, we apply Costello to test the commercial LLMaaS embeddings provided by
commercial services, Ali Cloud and NLPCloud. The Ali Cloud service is built upon a multilingual
uni�ed large model architecture, although the o�cial documentation does not explicitly specify
the particular model structure. The NLPCloud service is based on a decoder-based GPT-J model.
Since NLPCloud service has restrictions on sentence length, we can only use two types of samples,
CR1 and CR2, for testing. We also train downstream classi�ers on SST by collecting embeddings to
construct digitized features to evaluate the precision of Costello. Since those APIs do not directly
provide a token dictionary, we extracted words from the SST dataset to construct a dictionary for
computing adaptive thresholds.
Results. Table 4 demonstrates the #+ , %�, %� for the testing results. For the results on NLPCloud,
Costello output 400 relatively bad samples from a total of 1417 CR1 triples, while a whopping
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576 bad samples are reported from 681 CR2 triples without adaptive thresholds. This implies that
NLPcloud may indeed be more sensitive to changes in gender entities. After using the adaptive
thresholds, it can be observed that the precision is improved. We �nd that when using the ` − 2f
threshold, it does not work because the threshold value less than zero is forcibly corrected to zero.
When using the ` − f threshold, no CR1 violation can be found and CR2 violation is substantially
reduced, which indicates that the threshold is relatively large. As for the embeddings provided
by Ali Cloud, we can see that although there are a large number of embeddings that violate the
relative relationship when the threshold is 0, the number of violations decreases rapidly when the
adaptive threshold is added, which indicates that the service provided by Ali Cloud does not have a
lot of signi�cant violations of the semantic relationship of the embeddings, so the quality of their
service should be better. This makes sense because Ali Cloud uses a larger and more advanced
model than NLPCloud. Compared with the open-source models, the e�ectiveness of Costello has
declined in commercial LLMaaS. This may be due to additional processing or restrictions made by
the commercial service for goals such as e�ciency or generalization.
We present two typical violation cases for NLPCloud. In the �rst CR1 case, the magnitude of

change in the embeddings after replacing the negative HARD with REGRETFUL is surprisingly
larger than replacing it with the positive EASY. In another CR2 case, simply replacing FEMALE
with MALE results in a large embedding shift. We �nd that 8 of the 14 downstream classi�ers report

the exact opposite sentiment labels, which is a standard buggy case of individual discrimination

and incorrect prediction. This inspires the property of fairness of the NLPCloud service should be
improved in the future. A similar phenomenon occurs with Ali Cloud’s embeddings as shown in
Case 3, in which just replacing HE with SHE leads to a di�erent result.

Answer to RQ4: Costello can be applied to the real-world commercial LLMaaS (Ali Cloud and
NLPCloud) and successfully �nd typical violations of accuracy and fairness.

Case 1

CR: Synonym substitution vs Antonym substitution

Input:Gooding is the energetic frontman, and it’s hard to resist his enthusiasm, even if the �lmmakers

come up with nothing original in the way of slapstick sequences.

Positive sample: Gooding is the energetic frontman, and it’s grueling to resist his enthusiasm, even

if the �lmmakers come up with nothing original in the way of slapstick sequences.

Negative sample: Gooding is the energetic frontman, and it’s easy to resist his enthusiasm, even if

the �lmmakers come up with nothing original in the way of slapstick sequences.

Case 2

CR: Gender entity substitution vs Synonym substitution

Input: an essentially awkward version of the lightweight female empowerment picture we ’ve been

watching for decades

Positive sample: an essentially awkward version of the lightweight male empowerment picture we

’ve been watching for decades

Negative sample: an essentially bunglesome version of the lightweight female empowerment picture

we’ve been watching for decades
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Case 3

CR: Gender entity substitution vs Synonym substitution

Input: He ’s a better actor than a standup comedian.

Positive sample: She ’s a better actor than a standup comedian.

Negative sample: He ’s a pro�cient actor than a standup comedian.

6 THREAT TO VALIDITY

Language Models. The �rst threat to validity is language models under testing. The quality of
embeddings can vary greatly from model to model, which is likely to a�ect the performance of
Costello. To eliminate this threat as much as possible, we collect 42 popular open-source encoder-
based language models. Further, we have preliminarily explored the applicability of COSTELLO on
other structural models and conducted a case study on NLPCloud and Ali Cloud to investigate the
e�ectiveness of Costello on real-world LLMaaS.
Con�gurable Parameters. Although we have shown the impact of these parameters, there is still
no guarantee that they will take e�ect in the new scenario. To mitigate this threat, we implement
all distance metrics and adaptive thresholds, while providing an easy interface to modify the
dictionaries used to calculate thresholds in Costello. We release our source codes for reproduction.

7 RELATED WORK

7.1 Testing of AI So�ware

With the rapid development of AI models, AI software has been widely deployed in the real world
like autonomous driving, QA robots and neural machine translation [50]. Quality assurance of
AI software is challenging due to the data-driven software paradigm and the black-box nature
of AI models. Recently, researchers have conducted a line of exploration to address this problem.
Speci�cally, they investigate tools to uncover erroneous decisions under speci�c test inputs. They
apply fuzzing [46, 70], concolic testing [61], combinatorial testing [42], di�erential testing [71]
and metamorphic testing [8, 11, 12, 30, 31, 34, 62] to test AI software driven-by CNN, RNN or
sample DNNs. Inspired by code coverage, some testing criteria for AI models have been proposed
to measure the quality and test adequacy of test suites [25, 35, 43, 47]. Other researchers focus on
testing deep learning libraries [29, 66, 69] and how to debug and improve AI software [23, 44].

7.2 Testing of NLP So�ware

Researchers realize the insu�ciency of testing to language models and implement CHECKLIST [52],
considering some commonly accepted basic properties a language model should follow. Asyro� and
Yang proposed to uncover bias in sentiment analysis systems with gender-related mutation [8, 73].
Ji et al. developed ASRTest to automatically test speech recognition systems through multiple
character mutation and noise injection [34]. Chen et al. tested the QA software via asking recursively
based on the same knowledge [11], and proposed a property-based validation method to verify
if the machine reading comprehension software can maintain consistency or output a reversed
answer for a reversed question [12]. Testing translation software is another research hotspot. He
et al. proposed structure-invariant testing to check if the translation results maintain invariance
in the syntactic structure after word substitutions [31], and introduced referentially transparent
inputs which should preserve the same translation results in di�erent contexts [32]. Sun et al.
further investigated how to better select candidate words for word substitution and reduce false
positives [62, 63]. Unlike existing work, Costello focuses on LLMaaS embeddings, which draws

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 41. Publication date: July 2024.



COSTELLO: Contrastive Testing for Embedding-Based Large Language Model as a Service Embeddings 41:19

on existing work to generate test cases but organizes those cases using contrastive relationships so
that they can be applied to examine abstract embedding vectors.
Besides end-to-end testing NLP software, Du et al. proposed DeepStellar to build an abstract

model of RNNs to support quantitative analysis for adversarial sample detection and coverage-
guided test generation [18]. Sekhon et al. introduced MNCOVER to perform coverage-guide test
case selection for Transformers [56]. Since natural languages require a high degree of naturalness
in test cases, Huang et al. proposed AEON for automatically evaluating the quality of test cases.

7.3 Contrastive Learning

Contrastive learning (CRL) has been used in both CV [13, 33, 64] and NLP [15, 22, 27, 68] and
performs remarkably well. Recently, researchers have focussed on (unsupervised) CRL approaches
to learn e�ective and universal sentence embeddings. Inspired by SimCLR [13], which learns
image representations by creating semantically close samples with data augmentation for the same
images and then pulling apart other random samples within a batch. ConSERT [72] combines
augmentation strategies such as adversarial attack and token shu�ing to �ne-tune BERT e�ectively.
SimCSE [22] proposes a quite simple but e�ective strategy by employing random dropout masks
and achieves embeddings of excellent performance. Typically, contrastive learning indirectly
re�ects the overall quality of embeddings by evaluating the performance of end-to-end models on
downstream tasks. We borrow the idea of contrastive methods, but apply the contrastive testing
to identify problematic individual embeddings, but avoid building the downstream application
entities. Despite many existing large language models have improved their embedding quality
through contrastive learning, there may be still many issues, as demonstrated in this paper. This is
because for LLM trainers, considering a comprehensive and diverse set of contrastive relationships
is always challenging.

8 DISCUSSION

In this paper, we aim to examine the quality assurance issue of LLMaaS embeddings from an
aspect that prior research has not fully recognized. The Costello method allows for testing and
detecting potentially problematic individual embeddings without the need for training speci�c
downstream classi�ers. Empirical research has shown that there is a high likelihood that the
problems with embeddings will cause downstream issues. Additionally, it has been found that
the cosine distance, which is often used to evaluate semantic similarity, may not be very e�ective
for �ne-grained classi�cation tasks. At that time, we acknowledge that our implementation only
addresses four kinds of contrastive relationships, and the generation operators are all basic word-
level substitutions, which are somewhat limited. However, it does not impair Costello as an
easy-to-expand framework. Moreover, we recognize that diverse developers and tasks prioritize
varying task-speci�c properties, which must be speci�ed in compliance with actual requirements.
In the future, we will expand more task-speci�c contrastive relationships in Costello and test
more real-world LLMaaS.

9 CONCLUSTION

This work proposed a novel contrastive testing approach, Costello, to automatically mine poten-
tial problematic LLMaaS embeddings. Costello uses semantic-guided mutation and combination
to synthesize test suites with positive samples and negative samples. With contrastive relation-
ships, Costello measures the semantic distance of embeddings to identify samples that violate
expectations and examines quality �aws of LLMaaS in terms of semantics, without interpreting
or predicting the embedding vectors. Our evaluation demonstrates that Costello can e�ectively
detect problematic embeddings that tend to cause bad behaviors in downstream applications.
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10 DATA AVAILABILITY

To support reproducibility, we have released codes about our implementation and evaluation, as
well as data including manual annotation, at https://github.com/lenijwp/COSTELLO.
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